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ABSTRACT
ABBOT is a hybrid connectionist-HMM large vocabulary continu-
ous speech recognition system developed at the Cambridge Uni-
versity Engineering Department. This uses a recurrent neural net-
work acoustic model to map acoustic features into posterior phone
probabilities. These posterior probabilities are then converted to
scaled likelihoods and used as observation likelihoods for phone
HMMs [1, 2]. This paper describes the development of theCU-
CON system which participated in the 1996 ARPA Hub 4 Evalua-
tions. The system is based on ABBOT. The Hub 4 Evaluation task
involves the transcription of broadcast television and radio news pro-
grammes. This is an extremely demanding task for state-of-the-art
speech recognition systems. Typical programmes include a wide
variety of speaking styles and acoustic conditions. These range
from read speech recorded in the studio to extemporaneous speech
recorded over telephone channels. Results are presented for the sys-
tem at various stages of development, as well as for the final evalu-
ation system.

1. INTRODUCTION
The hybrid connectionist-hidden Markov model approach
uses an underlying hidden Markov process to model the time-
varying nature of the speech signal and a connectionist sys-
tem to estimate the observation likelihoods within the hid-
den Markov model (HMM) framework. ABBOT is a large-
vocabulary speech recognition system based on the hybrid
approach which utilises a recurrent network for acoustic mod-
elling. The major advantage of this approach is that the re-
current network acts as a non-parametric model that is able
to capture temporal acoustic context. Consequently, the ba-
sic ABBOT system is able to achieve very good performance
using single pass decoding and context-independent phone
models [3].

This paper reports on the development of theCU-CON sys-
tem for the 1996 ARPA Evaluations. Section 3 describes the
acoustic models used for the 1996 evaluations, and the pro-
cess of training a new set of models on the broadcast news
acoustic training data. This includes a description of the lin-
ear input network (LIN) technique used for channel adapta-
tion. This method has been used to adapt the acoustic models
used for telephone speech, and for speech in degraded acous-
tical conditions. Section 4 outlines the procedure used for
creating a lexicon and language model, plus a description of

the training texts used, and the procedure for producing pro-
nunciations. Next the performance of the system at various
stages of development is assessed on the 1996 Hub 4 devel-
opment test data. The final section presents the official results
on the Hub 4 evaluation test data.

2. THE 1996 ARPA HUB 4 TASK
The 1996 evaluation consists of two components, a “parti-
tioned evaluation” (PE) component, and an “unpartitioned
evaluation” (UE) component. The PE contains speech that
is manually segmented into homogeneous regions, and pro-
vides a set of six controlled contrastive conditions known as
“evaluation focus conditions”:

F0: Baseline broadcast studio speech

F1: Spontaneous broadcast studio speech

F2: Speech over telephone channels

F3: Speech in the presence of background music

F4: Speech under degraded acoustical conditions

F5: Speech from non-native speakers

Segments that do not fall within the specification for the fo-
cus conditions presented above are labelled FX. The UE is
similar to the 1995 Hub 4 evaluation in that it contains rela-
tively complete portions of television and radio news broad-
casts, but using a wider variety of source material than was
employed in the 1995 evaluation. TheCU-CON system par-
ticipated in the PE only.

3. ACOUSTIC MODELS
This section describes the acoustic modelling process used
in the ABBOT system. This includes a brief description of
the front-end, the recurrent network, and phonetic context-
dependent modelling which augments the standard context-
independent model.



3.1. Acoustic Feature Representation

Two sets of acoustic features have been used in the past by
the ABBOT system: MEL+, a 20 channel mel-scaled filter
bank with energy, degree of voicing, and pitch [4], andPLP,
12th order cepstral coefficients derived using perceptual lin-
ear prediction and log energy [5]. The 1996 ABBOT system
uses bothMEL+ andPLP acoustic features. TheMEL+ and
PLP features were computed from 32 msec windows of the
speech waveform every 16 msec. To increase the robustness
of the system to environmental conditions, the statistics of
each feature channel were normalised to zero mean with unit
variance over each segment.

3.2. Acoustic Model Architecture

The basic acoustic modelling system [6, 7] is illustrated in
Figure 1. For each input frame, an acoustic vector,u(t), is
presented at the input to the network along with the current
state,x(t). These two vectors are passed through a standard
single layer, feed-forward network to give the output vector,
y(t�4), and the next state vector,x(t+1). Sigmoid and soft-
max nonlinearities are applied to the state and output nodes,
respectively. The output vector represents an estimate of the
posterior probability of each of the phone classes, i.e.,

yi(t) ' Pr(qi(t)ju
t+4
1 ) (1)

whereqi(t) is statei at time t andut
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is the input from time1 to t. The output is delayed by four
frames to account for forward acoustic context. The state vec-
tor provides the mechanism for modelling acoustic context
and the dynamics of the acoustic signal. There is one output
node per phone and the recurrent network generates all the
frame-by-frame phone posterior probabilities in parallel.

u(t) y(t-4)

x(t) x(t+1)

Time Delay

Figure 1: The recurrent network used for phone probability
estimation.

The training approach is based on Viterbi training. Each
frame of training data is assigned a phone label based on
an utterance orthography and the current model. The recur-
rent network is then trained – using the back-propagation-
through-time algorithm [8] – to map the input acoustic vector

sequence to the phone label sequence. The labels are then
reassigned and the process iterates. Initial alignments for the
ABBOT system were derived from a recurrent network trained
on the TIMIT database.

The 1996 ABBOT system utilises recurrent networks trained
on forward-in-time and backward-in-time input sequences of
both theMEL+ andPLP feature vectors. The recurrent net-
work builds up a representation of the past acoustic context
which implies the ordering of the input data is important. A
significant performance improvement is achieved by merging
multiple recurrent networks trained on these different input
representations [9]. The most successful merging technique
merges the network outputs in the log domain, i.e.,

log yi(t) =
1

K

KX
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log y
(k)

i (t)� Z (2)

whereZ is a constant to insure thaty is a valid probability
distribution.

3.3. Context-Dependent Modelling

By using the definition of conditional probability, the fac-
torisation of conditional context-class probabilities is used
to implement phonetic context-dependency in the acoustic
model [10]. The joint posterior probability of context class
j and phone classi is given by,

yij(t) = yi(t)yjji(t); (3)

whereyi(t) is estimated by the recurrent network. Single-
layer networks or “modules” are used to estimate the condi-
tional context-class posterior,

yjji(t) ' Pr(cj(t)ju
t+4
1 ; qi(t)); (4)

wherecj(t) is the context class for phone classqi(t). The in-
put to each module is the internal state (similar to the hidden
layer of an MLP) of the recurrent network, since it is assumed
that the state vector contains all the relevant contextual infor-
mation necessary to discriminate between different context
classes of the same monophone [11, 12].

Figure 2 shows the context-dependent system in operation.
The outputs on the right hand side of this figure are the
context-dependent posterior probabilities as estimated by
Equation 3.

Viterbi segmentation is used to align the training data. Each
context network is trained on a non-overlapping subset of the
state vectors generated from all the Viterbi aligned training
data. The context networks are trained using a gradient-based
procedure. The context classes for each context module are
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Figure 2: The phonetic context-dependent recurrent neural
network modular system.

determined by using a decision tree based approach. This al-
lows for sufficient statistics for training and keeps the system
compact (allowing fast context training). The decision trees
are also used to relabel the pronunciation lexicon.

3.4. Acoustic Model Training

This section describes the development of the acoustic mod-
els used in the 1996 ABBOT system.

A Viterbi forced alignment was performed using the 1995
ABBOT acoustic models. These are forward and backward in
time PLP models trained on the secondary channel data from
the Wall Street Journal corpus (SI84). Average log probabil-
ity scores were generated for each segment. Those segments
with poor scores were checked manually. It was found nec-
essary to edit the transcriptions or time markings for approx-
imately 2.5% of the segments.

A forward and backwardPLPmodel was then trained on all of
the broadcast news data. Forward and backwardMEL+ mod-
els were also trained on this data. Only one Viterbi alignment
was performed due to the late arrival of the acoustic training
data, and the lack of time available. These models are denoted
BN. A further 4 acoustic models were trained solely on the
F0 segments. These comprise forward and backward in time
models for bothMEL+ andPLP, and are denotedBN.F0 .

3.5. Channel Adaptation

TheBNmodels were extended to the F2 and F4 conditions by
means of linear input network (LIN) adaptation on the train-
ing data. The linear input network (LIN) has been success-
fully applied to connectionist HMM hybrid systems for su-
pervised speaker adaptation [13], unsupervised speaker adap-
tation [14], and unsupervised channel adaptation [3, 15]. A
linear mapping is created to transform the acoustic vector.
During recognition, this transformed vector is fed as input to
the speaker independent RNN. To train the LIN for a new fo-
cus condition, the LIN’s weights are initialised to an identity
matrix; this guarantees that the initial starting point is the gen-
eral broadcast news model. The input is propagated forward
to the output layer of the RNN. At this point the error is back-
propagated through the RNN. Note that the RNN weights are
kept frozen, and only the LIN’s weights are updated.

The F2 data was marked as either having low or medium fi-
delity. We reclassified all the F2 data into narrow or wide
band data based on the power in the upper 4kHz of the spec-
trum. However, merely averaging the power in the upper
4kHz of a segment would bias the classification due to the
relative number of voiced and unvoiced sections in a seg-
ment. To account for this we multiplied the energy in the
upper 4kHz of each frame by the estimated probability of
the frame representing an unvoiced segment. We chose a
threshold for the choice of narrow bandwidth and full band-
width by manually classifying a small proportion of the F2
segments. After setting this threshold all the F2 segments
were relabelled. A LIN was trained for eachBNmodel on the
narrow bandwidth F2 data. These adapted models (denoted
BN.adpt-nb ) were used on the evaluation data classified as
narrow bandwidth. Those segments classified as F2 wideband
were recognised using theBNmodel set without adaptation.

For the F4 condition LIN networks were trained on those seg-
ments labelled as F4 in the training data. These models are
denotedBN.adpt-F4 .

4. LANGUAGE MODEL AND LEXICON
The 1996 ABBOT system uses a 65,532 word vocabu-
lary. This was produced by extracting the most frequent
80,000 words from the broadcast news text data only, and
removing misspelled words, processing errors etc. Tri-
gram language models were built using an alpha release of
the CMU-Cambridge Statistical Language Modelling Toolkit
version 2.0. The toolkit offers more efficient processing
of text data, and provides for various discounting strate-
gies [16]. More details of the CMU-Cambridge Statisti-
cal Language Modelling Toolkit version 2.0 can be found at
http://svr-www.eng.cam.ac.uk/ �prc14/
toolkit documentation.html . The language models
used by ABBOT for previous evaluations have used the Good-
Turing discounting method. However, this year’s language



models have used the Witten-Bell discounting method [17].

Initial experiments were performed using both the broadcast
news texts, and the 1995 Hub 4 data, which covers general
North American business news. The results of these experi-
ments can be seen in Table 1.

Perplexity
Focus OOV BN Texts BN + Hub 4

F0 0.76% 210.06 193.62
F1 0.50% 194.70 206.68
F2 0.53% 190.50 196.52
F3 1.14% 238.03 230.87
F4 0.71% 225.85 214.34
F5 0.98% 299.15 252.16
FX 0.57% 197.97 206.45
All 0.65% 206.05 203.07

Table 1: Perplexity and out-of-vocabulary (OOV) rate by fo-
cus on the acoustic training data transcriptions for two lan-
guage models, one trained on the broadcast news texts, and
one trained on both the broadcast news texts and the 1995
Hub 4 texts.

From the initial results it was decided to build two different
language models, one for speech considered “planned”, and
one for speech considered “spontaneous”. Table 2 shows the
different text sources for the language model training data.
The Marketplace data is the transcriptions of the training data
supplied for the 1995 Hub 4 Evaluation. The transcriptions of
the broadcast news acoustic training data were also used for
training the language models.

Texts No: Words Language Model
Broadcast News 132 million planned, spont.
1995 Hub 4 texts 108 million planned.
1995 Marketplace 50,000 planned, spont.
1996 transcripts 380,000 planned, spont.

Table 2: LM training data.

The recognition lexicon includes priors on multiple pronun-
ciations. The priors are normally calculated by gathering the
statistics from a forced alignment. This year these multiple
pronunciation priors have been reestimated (and smoothed
with the statistics from the standard forced alignment), for
spontaneous speech. The statistics were gathered from a
forced alignment on a phone string recognition of the F1 and
F2 training data.

5. RESULTS
Table 3 shows results on the development test data for vari-
ous systems. These systems represent various stages in the
development of the 1996 ABBOT system:

Focus Word Error Rate %
System 1 System 2 System 3

F0 31.9 22.9 18.8
F1 58.0 46.8 40.9
F2 66.6 51.6 45.7
F3 62.9 46.6 40.7
F4 48.2 33.8 27.4
F5 44.7 36.6 31.5
FX 73.0 61.7 58.1

Overall 54.6 42.7 37.5

Table 3: Results on the development test set.

System 1:This is based on the 1995 ABBOT system, except
that only a single forward context-independentPLP network
was used. The acoustic model training data is the short term
speakers from WSJ0 secondary channel (SI84). The standard
ARPA 1995 60,000 word trigram language model was used.

System 2: This system uses forward and backwardPLP

broadcast news context-independent acoustic models. A tri-
gram language model trained only on the broadcast news text
is used. The system has a 65,532 word vocabulary.

System 3:This system uses word-internal context-dependent
forward and backwardPLP acoustic models. The same lan-
guage model assystem 2was used.

From the results it can be seen that using the broadcast
news acoustic and language modelling training data, and
merging forward and backward acoustic models has resulted
in a significant reduction in error rates. The overall error
rate has been reduced from 54.6% to 42.7%, a reduction
of 22.8%. The addition of limited word internal context-
dependent models has further reduced the overall word error
rate to 37.5%, a improvement in performance of 12.2%. Note
that the adapted modelsBN.adpt-nb or BN.adpt-F4
have not been evaluated on the development data due to lack
of time. The models trained only on those segments marked
F0 (BN.F0 ) result in a word error rate of 16.2% on the F0
segments of the development test set, a reduction of 13.8%
compared to theBNmodels.

6. EVALUATION SYSTEM
The CU-CON evaluation system used a number of features
that were not used on any of the systems evaluated on the
development data. Different language models were used for
segments marked as planned speech and segments marked as



spontaneous speech. In addition, channel adaptation was used
for reduced bandwidth F2 segments, and for the F4 segments.
Side information indicating planned or spontaneous speech is
provided with the FX segments. This information was used to
select the appropriate acoustic and language model to use for
each of the FX segments. Table 4 lists the acoustic and lan-
guage models used for each of the segments in the evaluation
test data. Note that the narrow band, wide band classification
of the F2 and FX-F2 segments was accomplished using the
method described in Section 3.5.

Focus Acoustic Model Language Model
F0 BN.F0 planned
F1 BN spont.

F2.nb BN.adpt-nb spont.
F2.wb BN spont.

F3 BN planned
F4 BN.adpt-F4 planned
F5 BN planned

FX-F1 BN spont.
FX-F2.nb BN.adpt-nb spont.
FX-F2.wb BN spont.

Table 4: Acoustic and language models used for the various
focus conditions.

Table 5 shows the official word error rates of theCU-CON

system on the 1996 Hub 4 evaluation test data. The number
of words per focus condition is also included. Single pass
decoding was performed using theNOWAY decoder [18]. No
test set adaptation was performed for this evaluation.

Focus No: Words WER %
F0 5995 25.8
F1 6593 33.5
F2 1748 40.4
F3 1417 33.4
F4 1833 39.3
F5 299 40.5
FX 2301 53.1

Overall 20186 34.7

Table 5: Number of words and word error rate by focus for
theCU-CON evaluation system.

Comparison with the results in Table 3 shows that error rates
for the baseline F0 condition are significantly higher on the
evaluation data. The perplexity of the F0 segments of the
development and evaluation data is similar, as is the signal-to-
noise ratio (SNR) (27.6dB for the evaluation data, and 29.4dB

for the development data). It is therefore surmised that the
F0 evaluation data contains more conversational type speech
than it’s development counterpart.

Focus Perplexity OOV Rate %
F0 205.28 1.59
F1 120.57 1.40
F2 150.22 1.63
F3 285.18 1.53
F4 128.20 0.59
F5 271.14 0.33
FX 167.29 0.96

Table 6: Perplexity and OOV by focus for theCU-CON eval-
uation system.

The perplexity for the different focus conditions is shown in
Table 6. The F0 perplexity is considerably higher than seen
for read speech in previous evaluations. Typical perplexity
values for the 1995 Hub 3 Evaluation test data were in the
region of 130 for trigram language models. Another possible
reason for the high error rates for planned speech when com-
pared with previous read speech evaluations, may be the low
signal-to-noise ratio (SNR). The SNR of the F0 segments is
27.6dB (as measured by the NIST toolwavemd), compared
to 38.0dB for the clean read speech of the 1995 Hub 3 Evalu-
ation contrast.
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Figure 3: Relative WER increase from the baseline F0 focus
condition to each of the other focus conditions.

Figure 3 shows the degradation in performance of the dif-
ferent focus conditions as measured against the baseline F0
focus, for both the development and evaluation test data. It
can be seen that a far greater degradation was observed on
the development data, however, this is likely to reflect the
significantly lower word error rate of F0. The relative degra-
dation between each of the focus conditions is similar for the



development and evaluation data, except for the F4 and F5 fo-
cus conditions. These exhibit a far greater degradation on the
evaluation data when compared with the other focuses. Inves-
tigation has revealed that the SNR of the F4 data is 25.1dB
for the development data, but only 18.6dB for the evaluation
data. This is likely to be the reason for the greater F4 degra-
dation. The source of the extra degradation seen for the F5
focus condition is most probably due to the far higher per-
plexity seen in the evaluation data, which is 28% higher than
on the development data.

7. CONCLUSIONS
This paper has described the development of theCU-CON

system for the recognition of broadcast television and ra-
dio news. This has concentrated on building acoustic and
language models on data from this domain. This approach
was necessitated by the late arrival of the training data. Fur-
ther work on this task is planned, and includes the use of
boosting [19], extended context-dependent modelling, test set
adaptation, and speech enhancement.
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